下例顯示三個代碼示例。第一個代碼示例從 pubs 數(shù)據(jù)庫內(nèi)的 authors 表中返回所有行(沒有指定 WHERE 子句)和所有列(使用 *)。
USE pubs
SELECT *
FROM authors
ORDER BY au_lname ASC, au_fname ASC
-- Alternate way.
USE pubs
SELECT authors.*
FROM customers
ORDER BY au_lname ASC, au_fname ASC
下例從 pubs 數(shù)據(jù)庫內(nèi)的 authors 表中返回所有行(沒有指定 WHERE 子句)和列的一個子集(au_lname、au_fname、phone、city、state)。另外,還添加列標(biāo)題。
USE pubs
SELECT au_fname, au_lname, phone AS Telephone, city, state
FROM authors
ORDER BY au_lname ASC, au_fname ASC
下例只返回居住在加利福尼亞州且不姓 McBadden 的作者列。
USE pubs
SELECT au_fname, au_lname, phone AS Telephone
FROM authors
WHERE state = 'CA' and au_lname <> 'McBadden'
ORDER BY au_lname ASC, au_fname ASC
這些示例返回 titles 內(nèi)的所有行。第一個示例返回本年度截止到現(xiàn)在的銷售總額以及應(yīng)付給每個作者和出版商的金額。在第二個示例中,計算每本書的總收入。
USE pubs
SELECT ytd_sales AS Sales,
authors.au_fname + ' '+ authors.au_lname AS Author,
ToAuthor = (ytd_sales * royalty) / 100,
ToPublisher = ytd_sales - (ytd_sales * royalty) / 100
FROM titles INNER JOIN titleauthor
ON titles.title_id = titleauthor.title_id INNER JOIN authors
ON titleauthor.au_id = authors.au_id
ORDER BY Sales DESC, Author ASC
下面是結(jié)果集:
Sales Author ToAuthor ToPublisher
----------- ------------------------- ----------- -----------
22246 Anne Ringer 5339 16907
22246 Michel DeFrance 5339 16907
18722 Marjorie Green 4493 14229
15096 Reginald Blotchet-Halls 2113 12983
8780 Cheryl Carson 1404 7376
4095 Abraham Bennet 409 3686
4095 Akiko Yokomoto 409 3686
4095 Ann Dull 409 3686
4095 Burt Gringlesby 409 3686
4095 Dean Straight 409 3686
4095 Marjorie Green 409 3686
4095 Michael O'Leary 409 3686
4095 Sheryl Hunter 409 3686
4072 Johnson White 407 3665
3876 Michael O'Leary 387 3489
3876 Stearns MacFeather 387 3489
3336 Charlene Locksley 333 3003
2045 Albert Ringer 245 1800
2045 Anne Ringer 245 1800
2032 Innes del Castillo 243 1789
375 Livia Karsen 37 338
375 Stearns MacFeather 37 338
375 Sylvia Panteley 37 338
111 Albert Ringer 11 100
NULL Charlene Locksley NULL NULL
(25 row(s) affected)
下面是用于計算每本書的總收入的查詢:
USE pubs
SELECT 'Total income is', price * ytd_sales AS Revenue,
'for', title_id AS Book#
FROM titles
ORDER BY Book# ASC
下面是結(jié)果集:
Revenue Book#
--------------- --------------------- ---- ------
Total income is 81859.0500 for BU1032
Total income is 46318.2000 for BU1111
Total income is 55978.7800 for BU2075
Total income is 81859.0500 for BU7832
Total income is 40619.6800 for MC2222
Total income is 66515.5400 for MC3021
Total income is NULL for MC3026
Total income is 201501.0000 for PC1035
Total income is 81900.0000 for PC8888
Total income is NULL for PC9999
Total income is 8096.2500 for PS1372
Total income is 22392.7500 for PS2091
Total income is 777.0000 for PS2106
Total income is 81399.2800 for PS3333
Total income is 26654.6400 for PS7777
Total income is 7856.2500 for TC3218
Total income is 180397.2000 for TC4203
Total income is 61384.0500 for TC7777
(18 row(s) affected)
下例使用 DISTINCT 防止檢索重復(fù)的作者 ID 號:
USE pubs
SELECT DISTINCT au_id
FROM authors
ORDER BY au_id
第一個示例在tempdb 中創(chuàng)建一個名為 #coffeetabletitles 的臨時表。為使用該表,始終用下面顯示的精確名稱(包括井號 (#))引用它。
USE pubs
DROP TABLE #coffeetabletitles
GO
SET NOCOUNT ON
SELECT * INTO #coffeetabletitles
FROM titles
WHERE price < $20
SET NOCOUNT OFF
SELECT name
FROM tempdb..sysobjects
WHERE name LIKE '#c%'
下面是結(jié)果集:
name
------------------------------------------------------------------------
#coffeetabletitles__________________________________________________________________________________________________000000000028
(1 row(s) affected)
CHECKPOINTing database that was changed.
(12 row(s) affected)
name
------------------------------------------------------------------------
newtitles
(1 row(s) affected)
CHECKPOINTing database that was changed.
第二個示例創(chuàng)建一個名為 newtitles 的永久表。
USE pubs
IF EXISTS (SELECT table_name FROM INFORMATION_SCHEMA.TABLES
WHERE table_name = 'newtitles')
DROP TABLE newtitles
GO
EXEC sp_dboption 'pubs', 'select into/bulkcopy', 'true'
USE pubs
SELECT * INTO newtitles
FROM titles
WHERE price > $25 OR price < $20
SELECT name FROM sysobjects WHERE name LIKE 'new%'
USE master
EXEC sp_dboption 'pubs', 'select into/bulkcopy', 'false'
下面是結(jié)果集:
name
------------------------------
newtitles
(1 row(s) affected)
下例顯示在語義上相當(dāng)?shù)牟樵儾⒄f明使用 EXISTS 關(guān)鍵字和 IN 關(guān)鍵字的區(qū)別。下面是兩個示例,顯示一個有效子查詢檢索書名為商業(yè)書籍的每個出版商名稱,還檢索 titles 表和 publishers 表之間相匹配的出版商 ID 號。
USE pubs
SELECT DISTINCT pub_name
FROM publishers
WHERE EXISTS(SELECT *
FROM titles
WHERE pub_id = publishers.pub_id
AND type = 'business')
-- Or
USE pubs
SELECT distinct pub_name
FROM publishers
WHERE pub_id IN
(SELECT pub_id
FROM titles
WHERE type = 'business')
下例在一個相關(guān)(或重復(fù))子查詢中使用 IN,該查詢的值取決于外部查詢。它被重復(fù)執(zhí)行,為外部查詢可能選擇的每行各執(zhí)行一次。該查詢在 titleauthor 表中檢索每個版稅為 100% 且作者標(biāo)識號在 titleauthor 表和 authors 中相匹配的作者的名和姓。
USE pubs
SELECT DISTINCT au_lname, au_fname
FROM authors
WHERE 100 IN(SELECT royaltyper
FROM titleauthor
WHERE titleauthor.au_id = authors.au_id)
不能獨立于外部查詢對上述語句中的子查詢?nèi)≈?。它需要一個 authors.au_id 值,但是該值隨 Microsoft® SQL Server™ 檢查 authors 中的不同行而改變。
相關(guān)子查詢還可以用于外部查詢的 HAVING 子句。下例查找那些預(yù)付款最大金額是組平均值兩倍以上的書籍類型。
USE pubs
SELECT t1.type
FROM titles t1
GROUP BY t1.type
HAVING MAX(t1.advance) >= ALL(SELECT 2 * AVG(t2.advance)
FROM titles t2
WHERE t1.type = t2.type)
下例使用兩個相關(guān)子查詢查找作者姓名,這些作者至少參與過一本受歡迎的計算機書籍的創(chuàng)作。
USE pubs
SELECT au_lname, au_fname
FROM authors
WHERE au_id IN(SELECT au_id
FROM titleauthor
WHERE title_id IN
(SELECT title_id
FROM titles
WHERE type = 'popular_comp'))
下例在數(shù)據(jù)庫內(nèi)查找各出版商的本年度截止到現(xiàn)在的銷售總額。
USE pubs
SELECT pub_id, SUM(ytd_sales) AS total
FROM titles
GROUP BY pub_id
ORDER BY pub_id
下面是結(jié)果集:
pub_id
total
------
-----
0736
28286
0877
44219
1389
24941
(3 row(s) affected)
由于使用了 GROUP BY 子句,只為每個出版商各返回一個含有銷售總額的行。
下例查找按類型和出版商 ID 分組的平均價格和本年度截止到現(xiàn)在的銷售總額。
USE pubs
SELECT type, pub_id, AVG(price) AS 'avg', sum(ytd_sales) AS 'sum'
FROM titles
GROUP BY type, pub_id
ORDER BY type, pub_id
下面是結(jié)果集:
type pub_id avg sum
------------ ------ --------------------- -----------
business 0736 2.9900 18722
business 1389 17.3100 12066
mod_cook 0877 11.4900 24278
popular_comp 1389 21.4750 12875
psychology 0736 11.4825 9564
psychology 0877 21.5900 375
trad_cook 0877 15.9633 19566
UNDECIDED 0877 NULL NULL
(8 row(s) affected)
Warning, null value eliminated from aggregate.
下例在只檢索預(yù)付款多于 $5,000 的行后,將結(jié)果分成組。
USE pubs
SELECT type, AVG(price)
FROM titles
WHERE advance > $5000
GROUP BY type
ORDER BY type
下面是結(jié)果集:
type
------------ --------------------------
business 2.99
mod_cook 2.99
popular_comp 21.48
psychology 14.30
trad_cook 17.97
(5 row(s) affected)
下例按表達(dá)式分組。如果表達(dá)式不包含聚合函數(shù),則可以按表達(dá)式分組。
USE pubs
SELECT AVG(ytd_sales), ytd_sales * royalty
FROM titles
GROUP BY ytd_sales * royalty
ORDER BY ytd_sales * royalty
下面是結(jié)果集:
----------- -----------
NULL NULL
111 1110
375 3750
2032 24384
2045 24540
3336 33360
3876 38760
4072 40720
4095 40950
8780 140480
15096 211344
18722 449328
22246 533904
(13 row(s) affected)
第一個示例只為要求 10% 版稅的書籍生成組。由于沒有含 10% 版稅的現(xiàn)代烹調(diào)書籍,因此結(jié)果中沒有 mod_cook 類型的組。
第二個示例為所有類型均生成組,包括現(xiàn)代烹調(diào)書籍和 UNDECIDED,盡管現(xiàn)代烹調(diào)書籍組中沒有任何行符合 WHERE 子句中指定的條件。
對于沒有符合條件的行的組,容納聚合值的列(平均價格)為 NULL。
USE pubs
SELECT type, AVG(price)
FROM titles
WHERE royalty = 10
GROUP BY type
ORDER BY type
下面是結(jié)果集:
type
------------ --------------------------
business 17.31
popular_comp 20.00
psychology 14.14
trad_cook 17.97
(4 row(s) affected)
-- Using GROUP BY ALL
USE pubs
SELECT type, AVG(price)
FROM titles
WHERE royalty = 10
GROUP BY all type
ORDER BY type
下面是結(jié)果集:
type
------------ --------------------------
business 17.31
mod_cook NULL
popular_comp 20.00
psychology 14.14
trad_cook 17.97
UNDECIDED NULL
(6 row(s) affected)
下例查找各類書籍的平均價格并按平均價格排序結(jié)果。
USE pubs
SELECT type, AVG(price)
FROM titles
GROUP BY type
ORDER BY AVG(price)
下面是結(jié)果集:
type
------------ --------------------------
UNDECIDED NULL
mod_cook 11.49
psychology 13.50
business 13.73
trad_cook 15.96
popular_comp 21.48
(6 row(s) affected)
第一個示例顯示帶聚合函數(shù)的 HAVING 子句。該子句按類型分組 titles 表中的行,并且消除只包含一本書的組。第二個示例顯示不帶聚合函數(shù)的 HAVING 子句。該子句按類型分組 titles 表中的行,并且消除不是以字母 p 開頭的類型。
USE pubs
SELECT type
FROM titles
GROUP BY type
HAVING COUNT(*) > 1
ORDER BY type
下面是結(jié)果集:
type
------------
business
mod_cook
popular_comp
psychology
trad_cook
(5 row(s) affected)
該查詢在 HAVING 子句中使用 LIKE 子句。
USE pubs
SELECT type
FROM titles
GROUP BY type
HAVING type LIKE 'p%'
ORDER BY type
下面是結(jié)果集:
type
------------
popular_comp
psychology
(2 row(s) affected)
下例顯示在一個 SELECT 語句中使用 GROUP BY、HAVING、WHERE 和 ORDER BY 子句。該語句生成組和匯總值,但卻是在消除那些價格低于 $5 的書名后才生成組和匯總值。它還按 pub_id 組織結(jié)果。
USE pubs
SELECT pub_id, SUM(advance), AVG(price)
FROM titles
WHERE price >= $5
GROUP BY pub_id
HAVING SUM(advance) > $15000AND AVG(price) < $20
AND pub_id > '0800'
ORDER BY pub_id
下面是結(jié)果集:
pub_id
------ -------------------------- --------------------------
0877 26,000.00 17.89
1389 30,000.00 18.98
(2 row(s) affected)
下例按出版商分組 titles 表,并只包括那些支付的預(yù)付款總額超過 $25,000 且平均書價高于 $15 的出版商的組。
USE pubs
SELECT pub_id, SUM(advance), AVG(price)
FROM titles
GROUP BY pub_id
HAVING SUM(advance) > $25000
AND AVG(price) > $15
若要查看本年度截止到現(xiàn)在的銷售額超過 $40,000 的出版商,請使用下面的查詢:
USE pubs
SELECT pub_id, total = SUM(ytd_sales)
FROM titles
GROUP BY pub_id
HAVING SUM(ytd_sales) > 40000
如果想確保對每個出版商的計算中至少包含六本書,則使用 HAVING COUNT(*) > 5 消除返回的總數(shù)小于六本書的出版商。該查詢是這樣的:
USE pubs
SELECT pub_id, SUM(ytd_sales) AS total
FROM titles
GROUP BY pub_id
HAVING COUNT(*) > 5
下面是結(jié)果集:
pub_id total
------ -----
0877 44219
1389 24941
(2 row(s) affected)
使用該語句,返回了兩行。消除了 New Moon Books (0736)。
下例使用兩個代碼示例顯示 COMPUTE BY 的用法。第一個代碼示例使用一個帶一個聚合函數(shù)的 COMPUTE BY,第二個代碼示例使用一個帶兩個聚合函數(shù)的 COMPUTE BY 函數(shù)。
下例先按書籍類型,再按書籍價格計算每類烹調(diào)書籍(價格高于 $10)的價格總和。
USE pubs
SELECT type, price
FROM titles
WHERE price > $10
AND type LIKE '%cook'
ORDER BY type, price
COMPUTE SUM(price) BY type
下面是結(jié)果集:
type price
------------ ---------------------
mod_cook 19.9900
(1 row(s) affected)
sum
---------------------
19.9900
(1 row(s) affected)
type price
------------ ---------------------
trad_cook 11.9500
trad_cook 14.9900
trad_cook 20.9500
(3 row(s) affected)
sum
---------------------
47.8900
(1 row(s) affected)
下例檢索所有烹飪書籍的書籍類型、出版商標(biāo)識號和價格。COMPUTE BY 子句使用兩個不同的聚合函數(shù)。
USE pubs
SELECT type, pub_id, price
FROM titles
WHERE type LIKE '%cook'
ORDER BY type, pub_id
COMPUTE SUM(price), MAX(pub_id) BY type
下面是結(jié)果集:
type pub_id price
------------ ------ ---------------------
mod_cook 0877 19.9900
mod_cook 0877 2.9900
(2 row(s) affected)
sum max
--------------------- ----
22.9800 0877
(1 row(s) affected)
type pub_id price
------------ ------ ---------------------
trad_cook 0877 20.9500
trad_cook 0877 11.9500
trad_cook 0877 14.9900
(3 row(s) affected)
sum max
--------------------- ----
47.8900 0877
(1 row(s) affected)
可以使用不帶 BY 的 COMPUTE 關(guān)鍵字生成總計值、總計數(shù),等等。
該語句查找超過 $20 的所有類型書籍的價格和預(yù)付款總計。
USE pubs
SELECT type, price, advance
FROM titles
WHERE price > $20
COMPUTE SUM(price), SUM(advance)
在同一查詢內(nèi)可以使用 COMPUTE BY 和不帶 BY 的 COMPUTE。該查詢按類型查找價格總和和預(yù)付款總和,然后計算所有類型書籍的價格總計和預(yù)付款總計。
USE pubs
SELECT type, price, advance
FROM titles
WHERE type LIKE '%cook'
ORDER BY type, price
COMPUTE SUM(price), SUM(advance) BY type
COMPUTE SUM(price), SUM(advance)
下面是結(jié)果集:
type price advance
------------ --------------------- ---------------------
mod_cook 2.9900 15000.0000
mod_cook 19.9900 .0000
(2 row(s) affected)
sum sum
--------------------- ---------------------
22.9800 15000.0000
(1 row(s) affected)
type price advance
------------ --------------------- ---------------------
trad_cook 11.9500 4000.0000
trad_cook 14.9900 8000.0000
trad_cook 20.9500 7000.0000
(3 row(s) affected)
sum sum
--------------------- ---------------------
47.8900 19000.0000
(1 row(s) affected)
sum sum
--------------------- ---------------------
70.8700 34000.0000
(1 row(s) affected)
下例只顯示選擇列表內(nèi)的三列,并在結(jié)果的最后提供基于所有價格和所有預(yù)付款的合計。
USE pubs
SELECT type, price, advance
FROM titles
COMPUTE SUM(price), SUM(advance)
下面是結(jié)果集:
type price advance
------------ --------------------- ---------------------
business 19.9900 5000.0000
business 11.9500 5000.0000
business 2.9900 10125.0000
business 19.9900 5000.0000
mod_cook 19.9900 .0000
mod_cook 2.9900 15000.0000
UNDECIDED NULL NULL
popular_comp 22.9500 7000.0000
popular_comp 20.0000 8000.0000
popular_comp NULL NULL
psychology 21.5900 7000.0000
psychology 10.9500 2275.0000
psychology 7.0000 6000.0000
psychology 19.9900 2000.0000
psychology 7.9900 4000.0000
trad_cook 20.9500 7000.0000
trad_cook 11.9500 4000.0000
trad_cook 14.9900 8000.0000
(18 row(s) affected)
sum sum
--------------------- ---------------------
236.2600 95400.0000
(1 row(s) affected)
Warning, null value eliminated from aggregate.
下例查找所有心理學(xué)書籍的價格總和,以及按出版商分類的心理學(xué)書籍的價格總和。通過包含一個以上的 COMPUTE BY 子句,可以在同一語句內(nèi)使用不同的聚合函數(shù)。
USE pubs
SELECT type, pub_id, price
FROM titles
WHERE type = 'psychology'
ORDER BY type, pub_id, price
COMPUTE SUM(price) BY type, pub_id
COMPUTE SUM(price) BY type
下面是結(jié)果集:
type pub_id price
------------ ------ ---------------------
psychology 0736 7.0000
psychology 0736 7.9900
psychology 0736 10.9500
psychology 0736 19.9900
(4 row(s) affected)
sum
---------------------
45.9300
(1 row(s) affected)
type pub_id price
------------ ------ ---------------------
psychology 0877 21.5900
(1 row(s) affected)
sum
---------------------
21.5900
(1 row(s) affected)
sum
---------------------
67.5200
(1 row(s) affected)
第一個示例使用 COMPUTE 子句計算不同類型烹調(diào)書籍的價格總和。第二個示例只使用 GROUP BY 生成相同的匯總信息。
USE pubs
-- Using COMPUTE
SELECT type, price
FROM titles
WHERE type like '%cook'
ORDER BY type, price
COMPUTE SUM(price) BY type
下面是結(jié)果集:
type price
------------ ---------------------
mod_cook 2.9900
mod_cook 19.9900
(2 row(s) affected)
sum
---------------------
22.9800
(1 row(s) affected)
type price
------------ ---------------------
trad_cook 11.9500
trad_cook 14.9900
trad_cook 20.9500
(3 row(s) affected)
sum
---------------------
47.8900
(1 row(s) affected)
下面是另一個使用 GROUP BY 的查詢:
USE pubs
-- Using GROUP BY
SELECT type, SUM(price)
FROM titles
WHERE type LIKE '%cook'
GROUP BY type
ORDER BY type
下面是結(jié)果集:
type
------------ ---------------------
mod_cook 22.9800
trad_cook 47.8900
(2 row(s) affected)
下例只返回含有本年度截止到現(xiàn)在的當(dāng)前銷售額的行,然后按 type 以遞減順序計算書籍的平均價格和預(yù)付款總額。將返回四個數(shù)據(jù)列,包括截斷的書名。所有的計算列都出現(xiàn)在選擇列表內(nèi)。
USE pubs
SELECT CAST(title AS char(20)) AS title, type, price, advance
FROM titles
WHERE ytd_sales IS NOT NULL
ORDER BY type DESC
COMPUTE AVG(price), SUM(advance) BY type
COMPUTE SUM(price), SUM(advance)
下面是結(jié)果集:
title type price advance
-------------------- ------------ --------------------- ----------------
Onions, Leeks, and G trad_cook 20.9500 7000.0000
Fifty Years in Bucki trad_cook 11.9500 4000.0000
Sushi, Anyone? trad_cook 14.9900 8000.0000
(3 row(s) affected)
avg sum
--------------------- ---------------------
15.9633 19000.0000
(1 row(s) affected)
title type price advance
-------------------- ------------ --------------------- ----------------
Computer Phobic AND psychology 21.5900 7000.0000
Is Anger the Enemy? psychology 10.9500 2275.0000
Life Without Fear psychology 7.0000 6000.0000
Prolonged Data Depri psychology 19.9900 2000.0000
Emotional Security: psychology 7.9900 4000.0000
(5 row(s) affected)
avg sum
--------------------- ---------------------
13.5040 21275.0000
(1 row(s) affected)
title type price advance
-------------------- ------------ --------------------- ----------------
But Is It User Frien popular_comp 22.9500 7000.0000
Secrets of Silicon V popular_comp 20.0000 8000.0000
(2 row(s) affected)
avg sum
--------------------- ---------------------
21.4750 15000.0000
(1 row(s) affected)
title type price advance
-------------------- ------------ --------------------- ----------------
Silicon Valley Gastr mod_cook 19.9900 .0000
The Gourmet Microwav mod_cook 2.9900 15000.0000
(2 row(s) affected)
avg sum
--------------------- ---------------------
11.4900 15000.0000
(1 row(s) affected)
title type price advance
-------------------- ------------ --------------------- ----------------
The Busy Executive's business 19.9900 5000.0000
Cooking with Compute business 11.9500 5000.0000
You Can Combat Compu business 2.9900 10125.0000
Straight Talk About business 19.9900 5000.0000
(4 row(s) affected)
avg sum
--------------------- ---------------------
13.7300 25125.0000
(1 row(s) affected)
sum sum
--------------------- ---------------------
236.2600 95400.0000
(1 row(s) affected)
下例顯示兩個代碼示例。第一個示例使用 CUBE 運算符從 SELECT 語句返回結(jié)果集。SELECT 語句包含每本書的書名與銷售量之間的一對多關(guān)系。通過使用 CUBE 運算符,該語句返回額外的行。
USE pubs
SELECT SUBSTRING(title, 1, 65) AS title, SUM(qty) AS 'qty'
FROM sales INNER JOIN titles
ON sales.title_id = titles.title_id
GROUP BY title
WITH CUBE
ORDER BY title
下面是結(jié)果集:
title qty
----------------------------------------------------------------- ------
NULL 493
But Is It User Friendly? 30
Computer Phobic AND Non-Phobic Individuals: Behavior Variations 20
Cooking with Computers: Surreptitious Balance Sheets 25
...
The Busy Executive's Database Guide 15
The Gourmet Microwave 40
You Can Combat Computer Stress! 35
(17 row(s) affected)
NULL 代表 title 列中的所有值。結(jié)果集返回每個書名對應(yīng)的銷售量和所有書名對應(yīng)的銷售總量的值。應(yīng)用 CUBE 運算符或 ROLLUP 運算符將返回相同的結(jié)果。
下例使用 cube_examples 表顯示 CUBE 運算符如何影響結(jié)果集并使用聚合函數(shù) (SUM)。cube_examples 表包含產(chǎn)品名稱、客戶名稱以及每個客戶對某個特定產(chǎn)品下的訂單數(shù)。
USE pubs
CREATE TABLE cube_examples
(product_name varchar(30) NULL,
customer_name varchar(30) NULL,
number_of_orders int NULL
)
INSERT cube_examples (product_name, customer_name, number_of_orders)
VALUES ('Filo Mix', 'Romero y tomillo', 10)
INSERT cube_examples (product_name, customer_name, number_of_orders)
VALUES ('Outback Lager', 'Wilman Kala', 10)
INSERT cube_examples (product_name, customer_name, number_of_orders)
VALUES ('Filo Mix', 'Romero y tomillo', 20)
INSERT cube_examples (product_name, customer_name, number_of_orders)
VALUES ('Ikura', 'Wilman Kala', 10)
INSERT cube_examples (product_name, customer_name, number_of_orders)
VALUES ('Ikura', 'Romero y tomillo', 10)
INSERT cube_examples (product_name, customer_name, number_of_orders)
VALUES ('Outback Lager', 'Wilman Kala', 20)
INSERT cube_examples (product_name, customer_name, number_of_orders)
VALUES ('Filo Mix', 'Wilman Kala', 30)
INSERT cube_examples (product_name, customer_name, number_of_orders)
VALUES ('Filo Mix', 'Eastern Connection', 40)
INSERT cube_examples (product_name, customer_name, number_of_orders)
VALUES ('Outback Lager', 'Eastern Connection', 10)
INSERT cube_examples (product_name, customer_name, number_of_orders)
VALUES ('Ikura', 'Wilman Kala', 40)
INSERT cube_examples (product_name, customer_name, number_of_orders)
VALUES ('Ikura', 'Romero y tomillo', 10)
INSERT cube_examples (product_name, customer_name, number_of_orders)
VALUES ('Filo Mix', 'Romero y tomillo', 50)
首先,發(fā)出一個帶 GROUP BY 子句和結(jié)果集的典型查詢。
USE pubs
SELECT product_name, customer_name, SUM(number_of_orders)
FROM cube_examples
GROUP BY product_name, customer_name
ORDER BY product_name
GROUP BY 使結(jié)果集在組內(nèi)形成組。下面是結(jié)果集:
product_name customer_name
------------------------------ ------------------------------ ----------
Filo Mix Eastern Connection 40
Filo Mix Romero y tomillo 80
Filo Mix Wilman Kala 30
Ikura Romero y tomillo 20
Ikura Wilman Kala 50
Outback Lager Eastern Connection 10
Outback Lager Wilman Kala 30
(7 row(s) affected)
然后,使用 CUBE 運算符發(fā)出一個帶 GROUP BY 子句的查詢。結(jié)果集應(yīng)包括相同的信息以及各 GROUP BY 列的超聚合信息。
USE pubs
SELECT product_name, customer_name, SUM(number_of_orders)
FROM cube_examples
GROUP BY product_name, customer_name
WITH CUBE
CUBE 運算符的結(jié)果集包含上述簡單 GROUP BY 結(jié)果集的值,并為 GROUP BY 子句中的各行添加超聚合信息。NULL 代表結(jié)果集中所有計算出的聚合值。下面是結(jié)果集:
product_name customer_name
------------------------------ ------------------------------ ----------
Filo Mix Eastern Connection 40
Filo Mix Romero y tomillo 80
Filo Mix Wilman Kala 30
Filo Mix NULL 150
Ikura Romero y tomillo 20
Ikura Wilman Kala 50
Ikura NULL 70
Outback Lager Eastern Connection 10
Outback Lager Wilman Kala 30
Outback Lager NULL 40
NULL NULL 260
NULL Eastern Connection 50
NULL Romero y tomillo 100
NULL Wilman Kala 110
(14 row(s) affected)
結(jié)果集的第 4 行表示所有客戶對 Filo Mix 總共下了 150 份訂單。
結(jié)果集的第 11 行表示所有客戶對所有產(chǎn)品下的訂單總數(shù)為 260。
結(jié)果集的第 12-14 行表示每個客戶對所有產(chǎn)品下的訂單總數(shù)分別為 100、110 和 50。
下例顯示兩個代碼示例。第一個代碼示例生成包含三列的 CUBE 結(jié)果集,第二個示例生成包含四列的 CUBE 結(jié)果集。
第一個 SELECT 語句返回所售書籍的發(fā)行名稱、書名和數(shù)量。下例中的 GROUP BY 子句包含兩個分別稱為 pub_name 和 title 的列。在 publishers 和 titles 之間以及 titles 和 sales 之間還存在兩個一對多關(guān)系。
通過使用 CUBE 運算符,使結(jié)果集中包含有關(guān)出版商售出的書名數(shù)量的更詳細(xì)信息。NULL 代表書名列中的所有值。
USE pubs
SELECT pub_name, title, SUM(qty) AS 'qty'
FROM sales INNER JOIN titles
ON sales.title_id = titles.title_id INNER JOIN publishers
ON publishers.pub_id = titles.pub_id
GROUP BY pub_name, title
WITH CUBE
下面是結(jié)果集:
pub_name title qty
-------------------- ---------------------------------------- ------
Algodata Infosystems But Is It User Friendly? 30
Algodata Infosystems Cooking with Computers: Surreptitious Ba 25
Algodata Infosystems Secrets of Silicon Valley 50
Algodata Infosystems Straight Talk About Computers 15
Algodata Infosystems The Busy Executive's Database Guide 15
Algodata Infosystems NULL 135
Binnet & Hardley Computer Phobic AND Non-Phobic Individu 20
Binnet & Hardley Fifty Years in Buckingham Palace Kitche 20
... ...
NULL Sushi, Anyone? 20
NULL The Busy Executive's Database Guide 15
NULL The Gourmet Microwave 40
NULL You Can Combat Computer Stress! 35
(36 row(s) affected)
增加 GROUP BY 子句中的列數(shù)將顯示 CUBE 運算符是 n 維運算符的原因。使用 CUBE 運算符時,有兩列的 GROUP BY 子句將多返回三種分組。根據(jù)列中的非重復(fù)值,分組的個數(shù)可以多于三個。
結(jié)果集先按出版商名稱,然后按書名分組。右邊的列中列出每個出版商售出的每個書名的數(shù)量。
title 列中的 NULL 代表所有書名。有關(guān)如何區(qū)分結(jié)果集中特定值和所有值的更多信息,請參見示例 H。CUBE 運算符從一個 SELECT 語句中返回下列幾組信息:
GROUP BY 子句中引用的每列已與 GROUP BY 中的所有其它列交叉引用,并已重新應(yīng)用 SUM 聚合,這就在結(jié)果集中生成附加的行。結(jié)果集中返回的信息隨 GROUP BY 子句中列數(shù)的增長在 n 維方向增長。
說明 請確保在 GROUP BY 子句后列出的列相互之間是有意義的實質(zhì)關(guān)系。例如,如果使用 au_fname 和 au_lname,CUBE 運算符將返回不相關(guān)的信息,如名字相同的作者售出的書籍?dāng)?shù)目。在實質(zhì)層次結(jié)構(gòu)(如年度銷售額和季度銷售額)上使用 CUBE 運算符將在結(jié)果集中生成無意義的行。使用 ROLLUP 運算符更有效。
在第二個代碼示例中,GROUP BY 子句包含由 CUBE 運算符交叉引用的三列。在 publishers 和 authors、authors 和 titles 以及 titles 和 sales 之間存在一對多關(guān)系。
使用 CUBE 運算符將返回有關(guān)出版商售出的書名數(shù)量的更詳細(xì)信息。
USE pubs
SELECT pub_name, au_lname, title, SUM(qty)
FROM authors INNER JOIN titleauthor
ON authors.au_id = titleauthor.au_id INNER JOIN titles
ON titles.title_id = titleauthor.title_id INNER JOIN publishers
ON publishers.pub_id = titles.pub_id INNER JOIN sales
ON sales.title_id = titles.title_id
GROUP BY pub_name, au_lname, title
WITH CUBE
基于 CUBE 運算符返回的交叉引用分組,CUBE 運算符返回下列信息:
說明 所有出版商、所有書名和所有作者的超聚合比銷售總額大,因為許多書的作者不止一位。
模式隨關(guān)系數(shù)的增長而顯現(xiàn)出來。報表中的值和 NULL 的模式顯示哪些組形成了匯總聚合。有關(guān)組的顯式信息由 GROUPING 函數(shù)提供。
下例顯示 SELECT 語句使用 SUM 聚合、GROUP BY 子句和 CUBE 運算符的方式。它還在 GROUP BY 子句后列出的兩列上使用 GROUPING 函數(shù)。
USE pubs
SELECT pub_name, GROUPING(pub_name),title, GROUPING(title),
SUM(qty) AS 'qty'
FROM sales INNER JOIN titles
ON sales.title_id = titles.title_id INNER JOIN publishers
ON publishers.pub_id = titles.pub_id
GROUP BY pub_name, title
WITH CUBE
結(jié)果集中有兩個包含 0 和 1 值的列,這兩列由 GROUPING(pub_name) 和 GROUPING(title) 表達(dá)式生成。
下面是結(jié)果集:
pub_name title qty
-------------------- --- ------------------------- --- -----------
Algodata Infosystems 0 But Is It User Friendly? 0 30
Algodata Infosystems 0 Cooking with Computers: S 0 25
Algodata Infosystems 0 Secrets of Silicon Valley 0 50
Algodata Infosystems 0 Straight Talk About Compu 0 15
Algodata Infosystems 0 The Busy Executive's Data 0 15
Algodata Infosystems 0 NULL 1 135
Binnet & Hardley 0 Computer Phobic AND Non-P 0 20
Binnet & Hardley 0 Fifty Years in Buckingham 0 20
... ...
NULL 1 The Busy Executive's Data 0 15
NULL 1 The Gourmet Microwave 0 40
NULL 1 You Can Combat Computer S 0 35
(36 row(s) affected)
下例顯示兩個代碼示例。第一個示例檢索產(chǎn)品名稱、客戶名稱和所下的訂單總數(shù)并使用 ROLLUP 運算符。
USE pubs
SELECT product_name, customer_name, SUM(number_of_orders)
AS 'Sum orders'
FROM cube_examples
GROUP BY product_name, customer_name
WITH ROLLUP
下面是結(jié)果集:
product_name customer_name Sum orders
------------------------------ ------------------------------ ----------
Filo Mix Eastern Connection 40
Filo Mix Romero y tomillo 80
Filo Mix Wilman Kala 30
Filo Mix NULL 150
Ikura Romero y tomillo 20
Ikura Wilman Kala 50
Ikura NULL 70
Outback Lager Eastern Connection 10
Outback Lager Wilman Kala 30
Outback Lager NULL 40
NULL NULL 260
(11 row(s) affected)
第二個示例顯示在公司列和部門列上執(zhí)行 ROLLUP 運算并合計出雇員總數(shù)。
ROLLUP 運算符生成聚合匯總。該運算符用在需要匯總信息但完整的 CUBE 提供的都是無關(guān)的數(shù)據(jù)時,或者用在集內(nèi)有集的情況中,例如公司內(nèi)的部門就是集內(nèi)的集。
USE pubs
CREATE TABLE personnel
(
company_name varchar(20),
department varchar(15),
num_employees int
)
INSERT personnel VALUES ('Du monde entier', 'Finance', 10)
INSERT personnel VALUES ('Du monde entier', 'Engineering', 40)
INSERT personnel VALUES ('Du monde entier', 'Marketing', 40)
INSERT personnel VALUES ('Piccolo und mehr', 'Accounting', 20)
INSERT personnel VALUES ('Piccolo und mehr', 'Personnel', 30)
INSERT personnel VALUES ('Piccolo und mehr', 'Payroll', 40)
在該查詢中,除了 ROLLUP 計算結(jié)果外,公司名稱、部門和公司內(nèi)所有雇員的總數(shù)也成為結(jié)果集的一部分。
SELECT company_name, department, SUM(num_employees)
FROM personnel
GROUP BY company_name, department WITH ROLLUP
下面是結(jié)果集:
company_name department
-------------------- --------------- -----------
Du monde entier Engineering 40
Du monde entier Finance 10
Du monde entier Marketing 40
Du monde entier NULL 90
Piccolo und mehr Accounting 20
Piccolo und mehr Payroll 40
Piccolo und mehr Personnel 30
Piccolo und mehr NULL 90
NULL NULL 180
(9 row(s) affected)
下例將三個新行添加進 cube_examples 表中。三行中的每行都在一個或多個列中記錄 NULL,以便只顯示 ROLLUP 函數(shù)在分組列中生成值 1。另外,下例修改了在前面的示例中使用的 SELECT 語句。
USE pubs
-- Add first row with a NULL customer name and 0 orders.
INSERT cube_examples (product_name, customer_name, number_of_orders)
VALUES ('Ikura', NULL, 0)
-- Add second row with a NULL product and NULL customer with real value
-- for orders.
INSERT cube_examples (product_name, customer_name, number_of_orders)
VALUES (NULL, NULL, 50)
-- Add third row with a NULL product, NULL order amount, but a real
-- customer name.
INSERT cube_examples (product_name, customer_name, number_of_orders)
VALUES (NULL, 'Wilman Kala', NULL)
SELECT product_name AS Prod, customer_name AS Cust,
SUM(number_of_orders) AS 'Sum Orders',
GROUPING(product_name) AS 'Grp prod_name',
GROUPING(customer_name) AS 'Grp cust_name'
FROM cube_examples
GROUP BY product_name, customer_name
WITH ROLLUP
GROUPING 函數(shù)只能與 CUBE 或 ROLLUP 一起使用。表達(dá)式取值為 NULL 時,GROUPING 函數(shù)返回值 1,因為列值是 NULL 且代表所有值的設(shè)置。當(dāng)相應(yīng)的列(不管是否是 NULL)不是來自作為語法值的 CUBE 或 ROLLUP 選項時,GROUPING 函數(shù)返回值 0。返回值的數(shù)據(jù)類型為 tinyint。
下面是結(jié)果集:
Prod Cust Sum Orders Grp prod_name Grp cust_name
------------- ------------------ ----------- ------------- -------------
NULL NULL 50 0 0
NULL Wilman Kala NULL 0 0
NULL NULL 50 0 1
Filo Mix Eastern Connection 40 0 0
Filo Mix Romero y tomillo 80 0 0
Filo Mix Wilman Kala 30 0 0
Filo Mix NULL 150 0 1
Ikura NULL 0 0 0
Ikura Romero y tomillo 20 0 0
Ikura Wilman Kala 50 0 0
Ikura NULL 70 0 1
Outback Lager Eastern Connection 10 0 0
Outback Lager Wilman Kala 30 0 0
Outback Lager NULL 40 0 1
NULL NULL 310 1 1
(15 row(s) affected)
下例使用包含聚合函數(shù)和 GROUP BY 子句的 SELECT 查詢,GROUP BY 子句按順序先后列出 pub_name、au_lname 和 title。
USE pubs
SELECT pub_name, au_lname, title, SUM(qty) AS 'SUM'
FROM authors INNER JOIN titleauthor
ON authors.au_id = titleauthor.au_id INNER JOIN titles
ON titles.title_id = titleauthor.title_id INNER JOIN publishers
ON publishers.pub_id = titles.pub_id INNER JOIN sales
ON sales.title_id = titles.title_id
GROUP BY pub_name, au_lname, title
WITH ROLLUP
通過使用 ROLLUP 運算符,沿列的列表從右到左移動以創(chuàng)建這些分組。
pub_name au_lname title SUM(qty)
pub_name au_lname NULL SUM(qty)
pub_name NULL NULL SUM(qty)
NULL NULL NULL SUM(qty)
NULL 代表該列中的所有值。
如果使用不帶 ROLLUP 運算符的 SELECT 語句,該語句則創(chuàng)建單個分組。該查詢返回每個 pub_name、au_lname和 title 唯一組合的總和值。
pub_name au_lname title SUM(qty)
將這些示例與在同一查詢上使用 CUBE 運算符所創(chuàng)建的分組進行比較。
pub_name au_lname title SUM(qty)
pub_name au_lname NULL SUM(qty)
pub_name NULL NULL SUM(qty)
NULL NULL NULL SUM(qty)
NULL au_lname title SUM(qty)
NULL au_lname NULL SUM(qty)
pub_name NULL title SUM(qty)
NULL NULL title SUM(qty)
分組對應(yīng)于結(jié)果集中返回的信息。結(jié)果集中的 NULL 代表列中的所有值。當(dāng)列(pub_name、au_lname和title)的順序和 GROUP BY 子句中列出的順序一樣時,ROLLUP 運算符返回下列數(shù)據(jù):
下面是結(jié)果集:
pub_name au_lname title SUM
----------------- ------------ ------------------------------------ ---
Algodata Infosys Bennet The Busy Executive's Database Guide 15
Algodata Infosys Bennet NULL 15
Algodata Infosys Carson NULL 30
Algodata Infosys Dull Secrets of Silicon Valley 50
Algodata Infosys Dull NULL 50
... ...
New Moon Books White Prolonged Data Deprivation: Four 15
New Moon Books White NULL 15
New Moon Books NULL NULL 316
NULL NULL NULL 791
(49 row(s) affected)
GROUPING 函數(shù)可以與 ROLLUP 運算符或 CUBE 運算符一起使用。該函數(shù)可以應(yīng)用于選擇列表中的一列。根據(jù)該列是否由 ROLLUP 運算符分組,該函數(shù)返回 1 或 0。
下例顯示使用 INDEX 優(yōu)化程序提示的兩種方式。第一個示例顯示強制優(yōu)化程序使用非聚集索引檢索表中的行,第二個示例顯示強制使用 0 索引執(zhí)行表掃描。
-- Use the specifically named INDEX.
USE pubs
SELECT au_lname, au_fname, phone
FROM authors WITH (INDEX(aunmind))
WHERE au_lname = 'Smith'
下面是結(jié)果集:
au_lname au_fname phone
-------------------------------------- -------------------- ----------
Smith Meander 913 843-0462
(1 row(s) affected)
-- Force a table scan by using INDEX = 0.
USE pubs
SELECT emp_id, fname, lname, hire_date
FROM employee (index = 0)
WHERE hire_date > '10/1/1994'
下例顯示如何與 GROUP BY 子句一起使用 OPTION (GROUP) 子句。
USE pubs
SELECT a.au_fname, a.au_lname, SUBSTRING(t.title, 1, 15)
FROM authors a INNER JOIN titleauthor ta
ON a.au_id = ta.au_id INNER JOIN titles t
ON t.title_id = ta.title_id
GROUP BY a.au_lname, a.au_fname, t.title
ORDER BY au_lname ASC, au_fname ASC
OPTION (HASH GROUP, FAST 10)
下例顯示使用 MERGE UNION 查詢提示。
USE pubs
SELECT *
FROM authors a1
OPTION (MERGE UNION)
SELECT *
FROM authors a2
下例中的結(jié)果集包括 Customers 和 SouthAmericanCustomers 這兩個表的 ContactName、CompanyName、City 和 Phone 列的內(nèi)容。
USE Northwind
GO
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_NAME = 'SouthAmericanCustomers')
DROP TABLE SouthAmericanCustomers
GO
-- Create SouthAmericanCustomers table.
SELECT ContactName, CompanyName, City, Phone
INTO SouthAmericanCustomers
FROM Customers
WHERE Country IN ('USA', 'Canada')
GO
-- Here is the simple union.
USE Northwind
SELECT ContactName, CompanyName, City, Phone
FROM Customers
WHERE Country IN ('USA', 'Canada')
UNION
SELECT ContactName, CompanyName, City, Phone
FROM SouthAmericanCustomers
ORDER BY CompanyName, ContactName ASC
GO
在下例中,第一個 SELECT 語句中的 INTO 子句指定名為 CustomerResults 的表包含由 Customers 和 SouthAmericanCustomers 表中指定列的并集組成的最終結(jié)果集。
USE Northwind
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_NAME = 'CustomerResults')
DROP TABLE CustomerResults
GO
USE Northwind
SELECT ContactName, CompanyName, City, Phone INTO CustomerResults
FROM Customers
WHERE Country IN ('USA', 'Canada')
UNION
SELECT ContactName, CompanyName, City, Phone
FROM SouthAmericanCustomers
ORDER BY CompanyName, ContactName ASC
GO
與 UNION 子句一起使用的某些參數(shù)的順序非常重要。下例通過兩個 SELECT 語句說明不正確和正確的 UNION 用法,并重命名這些語句輸出的列。
/* INCORRECT */
USE Northwind
GO
SELECT City
FROM Customers
ORDER BY Cities
UNION
SELECT Cities = City
FROM SouthAmericanCustomers
GO
/* CORRECT */
USE Northwind
GO
SELECT Cities = City
FROM Customers
UNION
SELECT City
FROM SouthAmericanCustomers
ORDER BY Cities
GO
這些示例使用 UNION 組合三個表的結(jié)果,這三個表都有相同的 5 行數(shù)據(jù)。第一個示例使用 UNION ALL 顯示重復(fù)的記錄并返回全部 15 行。第二個示例使用不帶 ALL 的 UNION,從組合的三個 SELECT 語句結(jié)果集中刪除重復(fù)的行。
最后一個示例在第一個 UNION 中使用 ALL,在第二個不帶 ALL 的 UNION 中用圓括號將 UNION 括在里面。第二個 UNION 因位于圓括號內(nèi)而首先得到處理,并且因為沒有使用 ALL 選項而返回 5 行且刪除重復(fù)的行。這 5 行通過 UNION ALL 關(guān)鍵字與第一個 SELECT 的結(jié)果組合,且不刪除這兩個由 5 行組成的結(jié)果集之間重復(fù)的行。最終結(jié)果有 10 行。
USE Northwind
GO
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_NAME = 'CustomersOne')
DROP TABLE CustomersOne
GO
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_NAME = 'CustomersTwo')
DROP TABLE CustomersTwo
GO
IF EXISTS(SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_NAME = 'CustomersThree')
DROP TABLE CustomersThree
GO
USE Northwind
GO
SELECT ContactName, CompanyName, City, Phone INTO CustomersOne
FROM Customers
WHERE Country = 'Mexico'
GO
SELECT ContactName, CompanyName, City, Phone INTO CustomersTwo
FROM Customers
WHERE Country = 'Mexico'
GO
SELECT ContactName, CompanyName, City, Phone INTO CustomersThree
FROM Customers
WHERE Country = 'Mexico'
GO
-- Union ALL
SELECT ContactName
FROM CustomersOne
UNION ALL
SELECT ContactName
FROM CustomersTwo
UNION ALL
SELECT ContactName
FROM CustomersThree
GO
USE Northwind
GO
SELECT ContactName
FROM CustomersOne
UNION
SELECT ContactName
FROM CustomersTwo
UNION
SELECT ContactName
FROM CustomersThree
GO
USE Northwind
GO
SELECT ContactName
FROM CustomersOne
UNION ALL
(
SELECT ContactName
FROM CustomersTwo
UNION
SELECT ContactName
FROM CustomersThree
)
GO
相關(guān)文章